Мощность и крутящий момент

Пользуясь случаем хотелось бы пролить свет на вечные споры о мощности и крутящем моменте двигателей внутреннего сгорания. Одни считают главным показателем максимальную мощность мотора, другие ставят во главу угла крутящий момент. Встречаются люди, которые считают, что 100 «дизельных» л.с. соответствуют примерно 140 «бензиновым» л.с. Также бытует мнение, что VW Golf TDI c 330 Нм крутящего момента будет ускоряться лучше, чем Porsche 911 с 320 Нм.

Очевидно, что эти утверждения не соответствуют действительности.

Определения и разъяснения:

Крутящий момент:

Крутящий момент двигателя прилагается к коленчатому валу двигателя или к первичному валу коробки передач. Крутящий момент изменяется в зависимости от частоты вращения двигателя. Крутящий момент на колесах зависит от передаточного отношения трансмиссии.

Крутящий момент на колесах:

Это преобразованный трансмиссией крутящий момент двигателя.

Мощность двигателя непосредственно взаимосвязана с крутящим моментом двигателя, а именно, через соотношение P=M*n/9550, где М- крутящий момент двигателя. Единица измерения 1 Н*м, n – частота вращения двигателя в об/мин.

Диаграммы крутящего момента достаточно, чтобы просчитать кривую мощности (и наоборот).

Мощность и крутящий момент

Возьмем два двигателя. У обоих максимальный крутящий момент 200 Нм при 4000 об/мин и мощность 147 л.с. при 6000 об/мин. Несмотря на то, что основные данные этих двух моторов одинаковы, они все же отличаются по динамическим характеристикам. Диапазон крутящего момента и мощности первого двигателя лучше чем у второго. Предположим, что переключение передач происходит при 6500 об/мин и обороты двигателя на следующей, более высокой передаче опускаются до 4300 об/мин. Первый двигатель имеет до точки при 6000 об/мин непрерывно больший крутящий момент и мощность. Таким образом, первый автомобиль будет ускоряться лучше. Это показывает, что основные данные двигателя дают только частичную информацию.

Так что мы теперь знаем о «крутящем моменте» и «мощности двигателя»? На самом деле сравнительно мало. Поскольку трансмиссия и ее передаточное отношение играю существенную роль в движении автомобиля. Старые американские автомобили были оборудованы 2-3 ступенчатыми коробками передач, и несмотря на значительные мощности двигателей, разгонялись они достаточно скромно, т.к. падение оборотов при переключении передач было слишком большим. Как грубое сравнение можно привести Mercedes S-Klasse. Он оборудован 7-ступенчатым автоматом, который позволяет полностью использовать имеющуюся в распоряжении мощность двигателя.

Почему это так?

Все мы знаем, что ускоряется автомобиль лучше в определенной области оборотов двигателя. Оптимально, когда обороты двигателя постоянно находятся в этом диапазоне. Но это возможно лишь на немногих автомобилях оборудованных CVT (безступенчатыми трансмиссиями).

Чем больше передач имеется в распоряжении, тем меньше становится скачок оборотов и тем ближе мы становимся к оптимальному числу оборотов двигателя между переключениями. Усилие на ведущих колесах, это то, что приводит автомобиль в движение. Это сила, приложенная по касательной к окружности колеса. Она несет в себе всю информацию (Крутящий момент, передаточное отношение трансмиссии, размер колес) и направлена противоположно силе сопротивления движению и силе инерции.

Когда нужно переключаться?

Оптимальная точка переключения достигается тогда, когда на следующей высшей передаче имеется большее усилие на ведущих колесах чем на актуальной передаче. Чтобы найти оптимальную точку переключения, необходимо воспользоваться кривой крутящего момента. Диаграмма тягового усилия на ведущих колесах зависит от передаточного отношения трансмиссии и размера установленных шин. Как только пересекутся кривые отдельных передач, нужно переключиться на следующую передачу, чтобы достичь лучшего ускорения. Если же кривые не пересекаются, тогда следует выкручивать двигатель до ограничителя. Далее отображены диаграммы тягового усилия на ведущих колесах, чтобы можно было прочувствовать теорию в деле.

Влияние передаточного отношения

Турбодизель достигает очень высоких значений крутящего момента при низких оборотах двигателя.

Но это только цифры, по которым можно судить о том, как автомобиль будет ускоряться и по ним нельзя делать окончательные выводы. Почему? Потому что дизелю нужно значительно дольше переключаться, чтобы достичь одинаковую с бензином скорость(т.к. число оборотов дизеля существенно ниже чем у бензинового двигателя). Это приводит к тому, что бензиновый двигатель свой низкий крутящий момент преобразует значительно лучше за счет коротких передач, чем дизель с длинными передачами.

Турбодизель против высокооборотистого атмосферного двигателя.

Несмотря на длинные передаточные отношения дизель как правило имеет лучшую тяговитость при низких оборотах. Наглядно это отображено на диаграмме сравнения BMW М3 3.2 л двигателя и BMW 535d. Несмотря на гигантский крутящий момент дизеля (520Нм), бензиновый двигатель (365Нм) в очень широком диапазоне оборотов двигателя имеет значительно большее тяговое усилие на ведущих колесах. Так что этот бензиновый двигатель (вопреки многим мнениям) может ездить с редкими переключениями, иногда даже ленивее чем 535d (на шестой передаче тяговое усилие на колесах стабильно выше чем у 535d, независимо при каких оборотах и какой скорости). Но можно говорить о том, что большая часть турбированных двигателей имеет лучшую приемистость (на низких оборотах) чем атмосферные двигатели. Так что предпочитаете ли вы двигатели имеющие «подрыв» на низких скоростях, или те, которые выдают тягу плавно, это остается делом вкуса.

Мощность и крутящий момент

Турбодизель против турбобензина

Сравним BMW E90 335i с 306 л.с. и 400 Нм и BMW E90 335d с 286 л.с. и 560 Нм. На низших передачах в среднем диапазоне оборотов тяга на колесах дизеля существенно выше, чем у бензинового двигателя. При высоких оборотах бензин свою мощность отыгрывает. На 6-й передаче бензин имеет стабильно большее усилие на колесах чем дизель.

Диаграмма тягового усилия BMW E90 335i и E90 335d

Мощность и крутящий момент

Дизель или бензин как тягач

Широко распространено мнение, что дизельный двигатель из-за его высокого крутящего момента лучше подходит для буксировки. Тем не менее из-за огромного скачка в развитии бензиновых двигателей это не совсем верно. Современные бензиновые двигатели все чаще оснащаются турбонагнетателями, которые могут создавать достаточное давление наддува при низких оборотах, и следовательно достигать высокого крутящего момента. Сравним двигатели 1.4 TSI (170 л.с., 240 Нм) и 2.0TDI (170 л.с., 350 Нм) в VW Golf5.

За основу взят 5% уклон, коэффициент лобового сопротивления 0.7, площадь лобового сопротивления 5.87 м2 и общая масса 3250 кг. 1-я передача для лучшего рассмотрения исключена.

Все режимы выше голубой линии возможны с вышеназванными условиями. Все режимы ниже голубой линии ведут к снижению скорости и в конечном счете к переходу на низшую передачу. Можно увидеть, что дизель может использовать первые четыре передачи, TSI – первые пять. Максимально допустимые скорости следующие:

TDI:

68 км/ч на второй передаче (в ограничителе оборотов)

104 км/ч на третьей передаче (вблизи ограничителя оборотов около 4400 об/мин)

TSI:

99 км/ч на второй передаче (вблизи ограничителя оборотов около 7000 об/мин)

106 км/ч на третьей передаче (при около 5500 об/мин)

90 км/ч на четвертой передаче (при около 3500 об/мин)

65 км/ч на пятой передаче (при около 2300 об/мин)

В целом TSI гораздо лучше подходит для движения с прицепом. Единственным недостатком может быть значительный рост расхода топлива у бензина.

Мощность и крутящий момент

Мощность и крутящий момент

Как выглядит диаграмма тягового усилия авто со ступенчатыми коробками передач мы уже знаем.

Для полноты картины следует отметить бесступенчатую трансмиссию Audi «Multitronic».

Мощность и крутящий момент

Рассмотрим кратко, так как эта трансмиссия имеет призрачные шансы на существование. Это безступенчатая трансмиссия с различными профилями вождения. Спортивно настроенный водитель использует голубую линию для максимального ускорения, с высокими оборотами и большим расходом. Средний водитель будет использовать более низкие обороты. А значит тяга на колесах будет не так высока как в спорт режиме. Соответственно автомобиль ускоряется медленнее. CVT, как уже говорилось ранее, превосходное решение. Теоретически она позволяет получить максимальную производительность. На практике все выглядит по другому. Авто с Мультитроником ускоряются хуже, чем авто с МКПП. Потери в трансмиссии слишком велики и перекрывают все преимущества.

А что же насчет двигателей грузовиков и коммерческих автомобилей?

Глядя на кривые мощности и крутящего момента грузовиков можно быстро обнаружить существенные отличия от легковых автомобилей. В то время как на двигателях легковых авто целью является как можно более равномерное и высокое значение крутящего момента, двигателям грузовиков необходим пик крутящего момента. Покажем качественные отличия грузовых и легковых турбодизелей:

Мощность и крутящий момент

Почему так?

Области применения полностью различны. Легковому автомобилю необходимо достичь максимального ускорения и как можно более высокой максимальной скорости. В тоже время необходимо принять во внимание тот факт, что эти двигатели практически постоянно используются в режимах частичной нагрузки. Грузовые же двигатели (в качестве простого примера возьмем двигатели бульдозера или трактора) обычно используются на максимальной нагрузке. Максимальные крутящие момент и мощность ему необходимы при низких оборотах, а также как можно большее нарастание крутящего момента. Почему не падение а именно нарастание крутящего момента станет ясно в следующем абзаце.

Цель этого нарастания величины крутящего момента может быть хорошо объяснена на примере бульдозера. Насыпь земли перед ковшом бульдозера всегда большая, поэтому возникает необходимость увеличить мощность, чтобы продвинуть насыпь дальше. При этой нагрузке частота вращения двигателя падает и вместе с тем падает скорость сдвига. Снижение числа оборотов двигателя благодаря типичной для грузовых транспортных средств кривой крутящего момента ведет к росту крутящего момента и мощности двигателя (смотри график). Таким образом в некоторой степени предотвращается дальнейшее падение оборотов и скорости сдвига – чем сильнее падение числа оборотов, тем больше мощности отдает двигатель. В переносном смысле можно сказать: кривая крутящего момента таких двигателей позволяет независимо от нагрузки относительно сохранять необходимую скорость. Такие моторы имеют «иммунитет» против увеличения нагрузки и становятся ненамного медленнее при ее увеличении. Но все же почему «нарастание крутящего момента» а не «падение»? Теперь нужно смотреть на график в направлении рабочих оборотов. При нагрузке число оборотов падает и происходит РОСТ крутящего момента.

 

Яндекс.Метрика